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Gallium nitride 

Gallium nitride (GaN) is a binary III-V compound material, with: 
 

– Wurtzite (hexagonal) crystal structure 

– Wide band gap of 3.4 eV (direct) 

– High thermal conductivity 
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Properties of GaN 

Selected properties at 300 K: 
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Property Si 4H-SiC Diamond GaAs GaN 

Band gap (eV) 1.1 3.2 5.5 1.4 3.4 

Relative permittivity 11.9 10 5.5 12.5 9–10 

Breakdown field (MV/cm) 0.3 3 5 0.4 3 

Thermal conductivity (W/K/cm) 1.48 3.30 20.00+ 0.54 1.30 
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Aluminium nitride 

Aluminium nitride (AlN) is a binary III-V compound material, with: 
 

– Wurtzite (hexagonal) crystal structure 

– Wide band gap of 6.2 eV (direct) 

– High thermal conductivity 
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AlGaN 

Take GaN and replace a fraction x (the mole fraction) of the Ga atoms 

with Al atoms  AlxGa1−xN 

Most material properties are then intermediate between those 

of GaN and AlN 
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Quantity GaN Al0.2Ga0.8N AlN Units Interpolation 

Band gap 3.43 3.77 6.20 eV Bowed, factor −1.33 

Breakdown field 3.3 4.32 8.4 MV/cm Linear (?) 

Relative permittivity 9.5 9.3 8.5 Linear 

[R. Quay, Gallium Nitride Electronics, ISBN 978-3-540-71890-1] 
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GaN crystal growth 

Convention: [0001] direction 

is along c axis from Ga to N 

 

A-face: atom of type A 

is on top of bilayer 

 

Single-bond 

(low energy) 

surface 
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[O. Ambacher et al., J. Appl. Phys. 85 (6), 3222 (1999)] 

bilayer 
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Polarisation 
Ga–N bonds are polar 

The Wurtzite crystal structure 

is non-centrosymmetric 

(i.e., it lacks inversion symmetry) 
 

Result: spontaneous 

polarisation of the material 
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Polarisation 

[O. Ambacher et al., J. Appl. Phys. 85 (6), 3222 (1999)] 

Note: PSP of AlN is stronger than that of GaN 

[E. T. Yu et al., J. Vac. Sci. Technol. B 17 (4), 1742 (1999)] 
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Piezoelectric effect 

Applying stress to the material distorts the crystal structure, 

causing further polarisation: piezoelectric polarisation PPE 
 

– If the horizontal lattice parameter a is varied 

from its natural value a0 there will be 

non-zero piezoelectric polarisation 

along the vertical (c) axis:  
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a0 

c0 
𝑃PE = 2

𝑎 − 𝑎0
𝑎0

𝑒31 − 𝑒33
𝐶13
𝐶33

 

Constant for 

a given x 

(Al fraction) 

[O. Ambacher et al., J. Appl. Phys. 85 (6), 3222 (1999)] 
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The AlGaN/GaN heterostructure 

AlN has a smaller lattice constant a0 than GaN 

…and more spontaneous polarisation PSP 

Grow AlxGa1−xN on top of (relaxed) GaN: 
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AlxGa1−xN 

GaN 

PSP 

PSP 

AlxGa1−xN 

GaN 

PSP 

PSP 

PPE 

+ + + + + + + + + + + + +  
Net positive 

polarisation-induced 

sheet charge 
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The AlGaN/GaN heterostructure 

Electronic band gap of AlN 

is larger than that of GaN 

– The band gap of AlxGa1−xN 

is somewhere in-between 

Electrons confined to a thin region 

near the AlxGa1−xN/GaN interface 

This is the two-dimensional 

electron gas (2DEG) 

– Areal density ~1013 electrons/cm−2 

No doping  no impurity scattering 

 very high mobility 
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Formation of the 2DEG 

Where do the electrons for the 2DEG “come from”? 

Model: donor-like surface states “provide” electrons 
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[J. P. Ibbetson et al., Appl. Phys. Lett. 77 (2), 250 (2000)] 

Theory Measurements 

Strain 

relaxation 

Electrons can come 

from Ohmic contacts. 

Surface donors play a 

role in the electrostatics. 
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GaN wafers 

Choice of substrate is very important 
 

Sapphire (Al2O3) 
–  Semi-insulating, can withstand high growth temperatures, relatively cheap 

–  Very low thermal conductivity, large lattice mismatch, large CTE mismatch 

 

Silicon carbide (SiC) 
–  High thermal conductivity, low lattice mismatch, relatively low CTE 

mismatch 

–  High cost, crystallographic defects 

 

Silicon (Si) 
–  Low cost, excellent availability of large diameters, acceptable thermal       

 conductivity, processing in standard silicon fabs (high productivity) 

–  Large lattice mismatch, very large CTE mismatch 
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Coefficient of thermal expansion 
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GaN-on-Si wafers 

Base: silicon substrate 

with (111) face 

Example recipe: 
1. Thin seed layer of AlN 

2. Thick buffer layer: 

superlattice of alternating 

GaN and AlGaN layers 

3. High-quality GaN layer 

4. AlGaN barrier 

5. GaN cap layer 

 

Reduce dislocation density 

Stress control / wafer bow 
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[H. F. Liu et al., J. Appl. Phys. 113, 023510 (2013)] 

[S. Lenci et al., Elec. Dev. Lett. 34 (8), 1035 (2013)] 

[D. Marcon et al., Trans. Semi. Manu. 26 (3), 361 (2013)] 
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Dislocations 

High initial dislocation density reduced towards surface (2DEG) 

by optimisation of buffer design 
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[S. L. Selvaraj et al., Proc. DRC 2012, 53 (2012)] 

Dislocations ~109 cm−2 
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GaN devices 
High–electron-mobility transistor (HEMT) 

Ohmic contacts 

to 2DEG (Ti/Al) 

Source and drain 

metallisation (Al) 

Gate metal (Ni) 

on top of GaN cap 

– Schottky contact 

SiN passivation 

Metal field plate(s) 
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NXP process: [J. J. T. M. Donkers et al., CS-MANTECH 2013, 259] 

foot 

head 
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GaN devices – HEMT operation 
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Zero bias On-state 

Off-state Off-state, high voltage 
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GaN devices 
Schottky barrier diode (SBD) 

“HEMT without a source” 

 

“Gate” → anode 
– Longer to handle 

high current 

 

“Drain” → cathode 
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GaN devices – diode operation 
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Zero bias Forward 

Reverse 

Forward operation 

(anode+, cathode−) 
– Electrons flow from 2DEG 

across AlGaN into anode 

Reverse operation 
– Electron leakage 

from anode edges 
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GaN devices – cap layer 

A few extra nanometres of GaN 

grown on top of AlGaN 
 

Possible advantages: 
– Decreased reverse leakage 

through Schottky contact 

– Reduced peak electric field 

– AlGaN protected against processing 

– Nitrogen degassing prevented 

– Increased device gain 

– Increased power added efficiency 

– Improved DC reliability 
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[E. T. Yu et al., Appl. Phys. Lett. 73 (13), 1880 (1998)] 
m

e
ta

l 

c
a
p

 

AlGaN GaN 

+ − 

e− 

[P. Waltereit et al., J. Appl. Phys. 106, 023535 (2009)] 

[S. Arulkumaran et al., Jpn. J. Appl. Phys. 44, 2953 (2005)] 
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GaN devices – HEMT characteristics 

VT: threshold voltage, typically −2 to −4 V 

VF: diode forward turn-on voltage, typically +1 to +2 V 

 

 

 

 

 

 

 

Ion: on-current, typically taken at VGS = 0 V for VDS = 0.1 V 

 On-resistance Ron = VDS / Ion 
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GaN devices – performance 

Wide band gap  high critical field  high voltage 

High carrier concentration and velocity  high current 
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[U. K. Mishra et al., Proc. IEEE 96 (2), 287 (2008)] 

High power 

High frequency 

Johnson’s 

figure of 

merit 

(rel. to Si) 

[A. Johnson, RCA Review 26, 163 (1965)] 

Suitability for high-frequency power applications 
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GaN devices – performance 
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[N. Ikeda et al., Proc. IEEE 98 (7), 1151 (2010)] 

Baliga figure of merit 
 

– Based on minimising the conduction losses in power FETs 

– Assumes power losses are solely due to the on-state power dissipation 

– Applies to lower frequencies where conduction losses dominate 

[B. J. Baliga, Elec. Dev. Lett. 10 (10), 455 (1989)] 

Relative 

permittivity 

Carrier mobility 

BFOM = εr µ Ec
3 

Critical electric 

field 

Sometimes Eg is used! 
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GaN devices – benchmarking 

Minimise specific on-resistance (Ron× A) 

Maximise breakdown voltage 
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[M. Su et al., Semicond. Sci. Technol. 

28, 074012 (2013)] 
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GaN devices – benchmarking 

Some more specific–on-resistance vs. breakdown-voltage plots 
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[S. L. Selvaraj et al., Proc. DRC 2012, 53] [N. Ikeda et al., Proc. ISPSD 2011, 284] 

See also [Q. Jiang et al., EDL 34 (3), 357 (2013)] and 

[Z. Tang et al., EDL 34 (3), 366 (2013)] 
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Issues 
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Schottky gate 

• Reverse leakage 

• Normally-on device 

• Forward turn-on 

High electric field 

• Edge leakage 

• Charge injection 

• Limits breakdown 

First passivation 

• On-resistance 

• Dynamic behaviour AlGaN barrier 

• Gate leakage 

• Diode turn-on 

• Charge trapping, 

threshold shift 

• Inverse piezoelectric 

effect GaN and buffer layers 

• Punch-through breakdown 

• Vertical leakage/breakdown 

• Dynamic behaviour 

High electric field 

• Charge injection 

• Limits breakdown 

Final passivation 

• Parasitic breakdown 
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Issues – gate leakage 

Various mechanisms potentially involved in gate leakage 
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[B. S. Eller et al., J. Vac. Sci. Technol. A 31 (5), 050807 (2013)] 

VG < 0 
2DEG 

See also [L. Xia et al., Appl. Phys. Lett. 102 (11), 113510 (2013)] 

AlGaN 

d 

^ 
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Issues – current collapse 

On-state current temporarily reduced following off-state stress 

 

 

 

 

 

 

 

Also known as dynamic Ron 
 

– On-state resistance depends on recent history of device biasing 
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Before stress  
Immediately following 

high-voltage stress  
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Issues – current collapse 

Device design and substrate composition can have a strong influence 

on the magnitude of current collapse (dynamic-Ron increase) 
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[O. Hilt et al., Proc. ISPSD 2012, 345 (2012)] 

0 V 

30 V 

50 V 

65 V 

Off-state 

stress: 

Also [S. DasGupta et al., Appl. Phys. Lett. 101 (24), 243506 (2012)] 
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Issues – virtual-gate effect 

Off-state stress: 
– Electrons from gate injected 

into trap states next to gate 

 

On-state after stress: 
– Trapped electrons act like 

a negatively biased gate 

– 2DEG partially depleted 

underneath  increased Ron 

 

Later (~seconds): 
– Electrons de-trap, 

2DEG current restored 
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On-state following stress 

Off-state stress 

− − − − 

− − − − 

Thinned 

2DEG 

Injected 

electrons 

[R. Vetury et al., Trans. Elec. Dev.  48 (3), 560 (2001)] 

[T. Mizutani et al., TED 50, 2015 (2003)] 
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Issues – buffer trapping 

Off-state stress: 
– Electrons trapped in bulk 

(deep donors/acceptors?) 

 

On-state after stress: 
– Trapped electrons partially 

deplete the 2DEG above 

 increased Ron 

 

Later (~minutes): 
– Electrons de-trap, 

2DEG current restored 
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[M. J. Uren et al., Trans. Elec. Dev. 

59 (12), 3327 (2012)] and refs. therein On-state following stress 

Off-state stress 

Thinned 

2DEG 

Trapped 

electrons 

− 

− − 
− 

− 
− − 

[E. Kohn et al., Trans. Microw. Theory Tech. 51 (2), 634 (2003)] 

− − 
− 

− 
− − 
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Issues – inverse piezoelectric effect 

Piezoelectric effect: 

mechanical stress  polarisation (i.e., internal electric field) 

Inverse (or converse) piezoelectric effect: 

applied voltage  electric field 

 mechanical stress 

 
 

High field at drain-side edge of gate 

 local stress  defect formation 

 device degradation (reliability) 
– Mitigate with field-plate design → 

 

– Not the full story… 
See [Meneghesso / Meneghini / Zanoni] 
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Also [N. A. Mahadik et al., Appl. Phys. Lett. 93 (26), 262106 (2008)] 

[Y. Ando et al., TED 59 (12), 3350 (2012)] 

[J. Joh et al., Microelec. Reliab. 50 (6), 767 (2010)] 



PUBLIC 

Outline 

GaN and related materials 

The AlGaN/GaN heterostructure 

GaN wafers 

GaN devices 

Issues facing high-voltage GaN-HEMT development 

High-voltage breakdown 

GaN-HEMT device simulation 

Compact modelling of GaN HEMTs 

Summary and conclusion 

16th September 2013 Stephen Sque - ESSDERC tutorial 

38 



PUBLIC 

Breakdown – measurement 

Typical breakdown measurement: 
– Start with all terminal biases zero 

– Reduce VG to a few volts below threshold 

– Increase VD and record terminal currents 

Current criterion often used 

for defining breakdown voltage Vbr 

(e.g., VDS for ID = 1 mA/mm) 

Other definitions for Vbr used! 

 
 

 

 

Drain injection technique: VS = 0, set ID, sweep VGS and find max. VDS 
[S. R. Bahl and J. A. del Alamo, Trans. Elec. Dev. 40 (8), 1558 (1993)] 

[M. Wang and K. J. Chen, Tran. Elec. Dev. 57 (7), 1492 (2010)] 
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[S. L. Selvaraj et al., 

Elec. Dev. Lett. 33 (10), 

1375 (2012)] 

[S. Karmalkar and U. K. Mishra, 

Trans. Elec. Dev. 48 (8), 1515 (2001)] 
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Breakdown – mechanisms 

Extrinsic: air arcing, conductive surface layer 

Intrinsic: impact ionisation, punch-through, vertical breakdown 
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Arcing (parasitic) 

Punch-through 

Vertical 

leakage 

Impact ionisation 

? 
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Breakdown – mechanisms 

Compare terminal currents to assess the 

relative contributions of different physical 

mechanisms to breakdown 

Example using current criterion for breakdown: 
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Dominated by 

gate-leakage 

impact-ionisation 

Dominated by 

drain-to-source 

punch-through 

Dominated by 

vertical current 

“Chuck” 

(substrate) 
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Breakdown – punch-through 

At high drain biases in the off-state, electrons can travel through the bulk 

GaN underneath the (turned-off) gate  drain-to-source current 

 

 

 

 

 

 

 
 

 

Prevent using: longer gate, acceptor doping in the bulk, back barrier, … 
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[M. J. Uren et al., Trans. Elec. Dev. 53 (2), 395 (2006)] 

2DEG 2DEG 
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Breakdown – impact ionisation 

Impact ionisation: high-energy electrons (or holes) can knock other 

electrons out of valence-band states into conduction-band states, 

creating electron-hole pairs and hence raising the current 
 

 

 

 

 

 

 

 

Avalanche breakdown: every electron (or hole) creates another 

electron-hole pair, and the current grows uncontrollably 
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Breakdown – impact ionisation 

Positive temperature coefficient: Vbr increases with increasing T 

 suggests impact ionisation (increased phonon scattering) 
 

[N. Dyakonova et al., Electron. Lett. 34 (17), 1699 (1998)] 

[T. Nakao et al., Phys. Stat. Sol. (c) 0 (7), 2335 (2003)] 

[M. Wang and K. J. Chen, TED 57 (7), 1492 (2010)] 

[X. Z. Dang et al., Electron. Lett. 35 (7), 602 (1999)] 

[B. Brar et al., Proc. HPD 2002, 487 (2002)] 
 

Impact-ionisation parameters for GaN 

have been evaluated theoretically 
 

[J. Kolník et al., J. Appl. Phys. 81 (2), 726 (1997)] 

[F. Bertazzi et al., J. Appl. Phys. 106, 063718 (2009)] 
 

…and determined experimentally 
 

[K. Kunihiro et al., EDL 20 (12), 608 (1999)] 
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[N. Dyakonova et al., 

Appl. Phys. Lett. 72 (10), 2562 (1998)] 

Not the full story? See also [Meneghesso / Meneghini / Zanoni] 
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Breakdown – gate-to-drain length scaling 

Breakdown voltage Vbr scales with gate-to-drain length LGD 

until vertical breakdown becomes dominant 

 

 

 

 

 

 

 

 

Why is ΔVbr / ΔLGD < 3 MV/cm? – leakage, electric field peaks, etc.… 
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[H. Ueda et al., Proc. ISPSD 2005, 311 (2005)] [S. L. Selvaraj et al., EDL 33 (10), 1375 (2012)] 

~1 MV/cm 

See also [N. Ikeda et al., Proc. IEEE 98 (7), 1151 (2010)] 
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Breakdown – vertical current 

Vertical leakage mechanisms / activation energies depend on wafer type 
[A. Pérez-Tomás et al., J. Appl. Phys. 113, 174501 (2013)] 

 

 

 

 

Traps identified in carbon-doped GaN-on-Si buffer layers 
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[C. Zhou et al., Proc. ISPSD 2012, 245 (2012)] 
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Breakdown – buffer optimisation 

Increasing the thickness of the buffer can increase breakdown voltage 

due to improved material quality and reduced vertical leakage 
[S. L. Selvaraj et al., Elec. Dev. Lett. 33 (10), 1375 (2012)] (see earlier slide) 

The inclusion of a carbon-doped “back barrier” can postpone punch-

through to higher VDS (at the expense of increased on-resistance) 
[E. Bahat-Treidel et al., Trans. Elec. Dev. 57 (11), 3050 (2010)] 

[S. A. Chevtchenko et al., Appl. Phys. Lett. 100, 223502 (2012)] ↓ 
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See also [N. Ikeda et al., Proc. IEEE 98 (7), 1151 (2010)] 

Measurements Simulations 

Different buffer compositions 
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Breakdown – passivation optimisation 

SiN surface passivation can increase the 

breakdown voltage by modifying the surface 

charges/traps (and hence the electric field) 
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[Y. Ohno et al., Appl. Phys. Lett. 84 (12), 2184 (2004)] 

Electroluminescence 
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Simulation – structure 

16th September 2013 Stephen Sque - ESSDERC tutorial 
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Ohmic contacts 

• n-type doping 

• Shape / profile 

Interface donors 

• Energy level(s) 

• Concentration 

• Dynamics 

Surface passivation 

• Fixed charge? 

Schottky gate 

• Work function 

• Tunnelling models 

S/D electrodes 

• Work function 

• Contact resistance 

AlGaN barrier 

• Polarisation charges 

• Traps / fixed charge 

Bulk GaN 

• Doping concentration, 

energy level, depth 

profile, and dynamics 

Buffer layer(s) 

• Superlattice? 

• Doping 

Interface(s) 

• Polarisation charge? 

• Energy band offsets Substrate 

• Doping (conductivity) 

• Energy band offsets 

Material parameters 

• Band gaps, electron affinities, 

permittivities, carrier mobilities, 

impact-ionisation parameters… 

AlGaN 

GaN 

SiN 
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Simulation – set-up 

Density gradient vs. classical simulation 

Lattice temperature equation – necessary for high-power simulation 

Drift-diffusion vs. hydrodynamic model 

Tunnelling at contacts and interfaces – Schottky gate 

Different levels of polarisation models – fixed charges vs. built-in polarisation 

Thermionic heterointerface condition 

Mobility models – doping dependence, saturation, surface (2DEG) vs. bulk 

Anisotropy? – mobility / impact ionisation 

Fermi-Dirac vs. Boltzmann statistics, incomplete ionisation of impurities 

Generation – band-to band, impact ionisation 

Recombination – direct (band-to-band), Shockley-Read-Hall 

Numerical precision – low carrier concentrations, steep gradients 
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[Synopsys] 
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Simulation – internal observations 

Electron and hole distribution in off-state at high drain bias 
– Can be correlated to (for example) electroluminescence measurements 
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[Y. Kong et al., Proc. ICMMT 2012, 1] 

Electrons Holes 

Intact 2DEG in 

source-to-gate 

region 

Thinned 2DEG in 

gate-to-drain region 

No 2DEG 

under gate 

First signs of 

punch-through? 

Drain-to-substrate 

hole current? 
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Simulation – internal observations 
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[own work] 

−7 V 

G 

+1235 V 

D S (0 V) 

Hole 

current 

Hole 

current 

Electron 

punch-through 

2DEG 2DEG 

Impact ionisation Impact ionisation 

To substrate 

Gate 

leakage 

GaN 

SiN 
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Simulation – field plates 

There is a large peak in the 

surface electric field at the 

drain side of the gate (foot) 

Using a gate field plate 

(head) can reduce this field 

peak, but adds a new one 

Using another field plate 

can reduce these peaks 

but adds a third one 

Field-plate design must be optimised 

– Can affect breakdown, capacitances, current collapse, degradation, etc. 
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 𝐸𝑥

𝑥D

𝑥S

d𝑥 = −𝑉DS 

[N.-Q. Zhang et al., Elec. Dev. Lett. 21 (9), 421 (2000)] 

[J. Li et al., Elec. Lett. 37 (3), 196 (2001)] 

[A. Wakejima et al., Appl. Phys. Lett. 90, 213504 (2007)] 

[W. Saito et al., Trans. Elec. Dev. 54 (8), 1825 (2007)] 

[H. Hanawa et al., IRPS 2013, CD.1.1] 

foot 

head 

field 

plate 
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Simulation – field plates 

Simulations can be used to optimise the device geometry to obtain the 

maximum Vbr with minimum degradation in frequency response and Ron 
[S. Karmalkar and U. K. Mishra, Trans. Elec. Dev. 48 (8), 1515 (2001)] 

 

 

 

 

 

 

 

Unity current gain (cut-off) frequency: 
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VD = 630 V 

FP height (SiN thickness) FP length Surface field at Vbr 

𝑓𝑇 =
𝑔𝑚
2𝜋𝐶G

 Minimise increase 

in gate capacitance 
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Simulation – field plates 

Making the gate-connected field plate too long can reduce Vbr 
 

– Depending on definition of Vbr! 
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[H. Onodera and K. Horio, Proc. EMICC (EuMIC) 2012, 401] 
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Simulation – comparison to measurements 

Kelvin probe force microscopy used to 

map internal potential distribution (w/wo FP) 
 

[A. Wakejima et al., Appl. Phys. Lett. 90, 213504 (2007)] 
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Electric field 

along surface 
Internal potential distribution 

−3 V 15 V 

−3 V 15 V 

See also [S. Kamiya et al., Appl. Phys. Lett. 90, 213511 (2007)] 

With FP 

Without FP 
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Simulation – drain field peak? 

Electric field peak at drain at very high 

voltage – enough to cause breakdown? 

– Dependent on specific details of 

Ohmic-contact implementation? 
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[H. Onodera and K. Horio, 

Proc. EMICC (EuMIC) 2012, 401] 

[W. Saito et al., TED 50 (12), 2528 (2003)] 

also [W. Saito et al., Proc. IEDM 2003, 687] 



PUBLIC 

Simulation – impact ionisation 

Improved modelling of impact ionisation 

can have a significant effect on 

simulated breakdown voltages 

– Treat impact-ionisation parameters 

as tuning parameters 
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[K. Kodama et al., J. Appl. Phys. 114, 044509 (2013)] 
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Simulation – buffer optimisation 

Thinning the lowly doped “spacing layer” 

between surface and carbon-doped layer 

can increase breakdown voltage via a 

decrease in the surface electric field peak 
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[T. Narita et al., Phys. Stat. Solidi C 9 (3–4), 915 (2012)] 

VD = 300 V 

Measurements 

Simulations 

See also [M. J. Uren et al., Trans. Elec. Dev. 59 (12), 3327 (2012)] 
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Simulation – multiphysics 

Thermo-electro-elastic simulations: 
– fully coupled thermal, mechanical, 

and electrical equations 

Used to investigate (for example): 
– The role of thermal and piezoelectric stresses on defect formation 

– …and the impact on electrical characteristics 
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TEM [U. Chowdhury et al., 

EDL 29 (10), 1098 (2008)] 

[M. G. Ancona et al., J. Appl. Phys. 111, 074504 (2012)] 

[M. G. Ancona, Proc. IEDM 2012, 315] 
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Outline 

GaN and related materials 

The AlGaN/GaN heterostructure 

GaN wafers 

GaN devices 

Issues facing high-voltage GaN-HEMT development 

High-voltage breakdown 

GaN-HEMT device simulation 

Compact modelling of GaN HEMTs 

Summary and conclusion 
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Modelling – compact models 

Models for GaN devices are needed to enable application development 

via circuit simulation and optimisation 

Different types of compact model: 

– Table-based: measured device data stored in large look-up tables 

• Very fast, but extrapolation outside of measured range is treacherous, 

and accurate scaling to other device dimensions is not possible 

– Empirical: uses whichever mathematical functions have the right shape 

• Good fits possible, but parameters are not physically meaningful, 

scaling is not physical, and extrapolation is still dubious 

– Physics-based: equations derived from modelling physical phenomena 

• Parameters physically meaningful, scaling is physical, extrapolation reliable 

• Threshold-voltage–based: physical expressions smoothed together 

• Surface-potential–based: uses a single expression for all regimes, 

inherent symmetry, established as the preferred approach in MOS modelling 

[Gildenblat et al., J. Solid-State Circ. 39 (9), 1394 (2004)] 
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See also [L. Dunleavy et al., Microwave Magazine 11 (6), 82 (2010)] 
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Modelling – empirical model 

Chalmers (a.k.a. Angelov) model 
– An empirical model for HEMT and MESFET devices, introduced in 1992 

[I. Angelov et al., Trans. Micro. Theory. Tech. 40 (12), 2258 (1992)] 

– Extended in 1996 to include temperature, dispersion, and soft breakdown 

[I. Angelov et al., TMTT 44 (10), 1664 (1996)] 

– Widely used for (RF) GaN-HEMTs 

– Modified in 2010 to make parameters more physical 
[T. Oishi et al., Proc. INMMIC 2010, 20 (2010)] 
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[I. Angelov et al., Proc. MTT 2012, 1 (2012)] 

[I. Angelov et al., Proc. APMC 2006, 279] 
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Modelling – empirical model 

Modified form of the Angelov model for GaN-on-Si power switches 
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25°C 280°C 

Introduce temperature 

dependence for the 

model parameters 

[S. Stoffels et al., Proc. THERMINIC 2011, 1 (2011)] 

See also [S. Stoffels THERMINIC 2012] 
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Modelling – empirical model 

Analytical model including current collapse 
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[A. Koudymov et al., Trans. Elec. Dev. 55 (3), 712 (2008)] 

Trapped 

charge 
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Modelling – physics-based model 

Model for 2DEG charge density: 
[S. Khandelwal et al., Trans. Elec. Dev. 

58 (10), 3622 (2011)] 

Expression extended for validity in sub-threshold regime… 

 

 

…and used as basis for drain-current model… 

 

 

 

 

…to which carrier velocity saturation, 

channel-length modulation, short-channel 

effects, and self-heating are added 
[S. Khandelwal and T. A. Fjeldly, Solid-State Electronics 76, 60 (2012)] 

See also [Yigletu et al., Proc. WiSNet / SiRF / RWS / PAWR 2013] 
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Smoothly 

connected 

See also [U. Radhakrishna et al., Proc. IEDM 2012, 319/13.6.1 (2012)] 

and [X. Cheng et al., TED 56, 2881 (2009)] 
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Modelling – physics-based model 

“Zone-based” compact model based on 

observations from device simulations 

– Different equations derived for different 

regions of the device, then smoothly joined 

– Alternative to equivalent-circuit models 
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Simulations 

Model 

Output 

[R. J. Trew, Proc. CSICS 2010, 1 (2010)] 

[R. J. Trew et al., Proc. ICWITS 2012, 1 (2012)] 

[H. Yin et al., Proc. IMS 2007, 787 and Proc. IMS 2008, 1425] 

and [D. Hou et al., TED 60 (2), 639 (2013)] 
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Modelling – surface-potential–based model 

The “first surface-potential–based compact model for RF GaN HEMTs” 
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[D. L. John et al., Proc. IEDM 2010, 186/8.3.1 (2010)] 

TCAD / physics 

Model 

Sub-circuit 

implementation Output 
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Modelling – surface-potential–based model 

A Surface-Potential-Based Compact Model for AlGaN/GaN MODFETs 

[X. Cheng and Y. Wang, Trans. Elec. Dev. 58 (2), 448 (2011)] 

 

 

 

 
 

 

Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices 

[S. Khandelwal et al., Trans. Elec. Dev. 59 (10), 2856 (2012)] and unpub. Trans. Elec. Dev. 
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See also [R. Jana and D. Jena, Proc. DRC 2012, 147 (2012)] 

and [Martin / Hahe / Lucci (2012–2013)] 



PUBLIC 

Outline 

GaN and related materials 

The AlGaN/GaN heterostructure 

GaN wafers 

GaN devices 

Issues facing high-voltage GaN-HEMT development 

High-voltage breakdown 

GaN-HEMT device simulation 

Compact modelling of GaN HEMTs 

Summary and conclusion 

16th September 2013 Stephen Sque - ESSDERC tutorial 

71 



PUBLIC 

Summary and conclusion 

The material properties of GaN and AlGaN, together with the 

remarkable properties of the AlGaN/GaN heterostructure, 

enable the creation of high-power, high-frequency devices 

Issues affecting AlGaN/GaN-based device development include: 

leakage currents, current collapse (dynamic behaviour), reliability, 

and sub-optimal breakdown 

Device simulation can be used to explore and address these issues, 

for example through buffer-composition and field-plate optimisation 

Compact models for GaN HEMTs are maturing into surface-potential– 

(physics-) based models with high accuracy, efficiency, and scalability 
(the Compact Model Council is currently choosing a standard GaN-HEMT compact model) 
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