High-voltage GaN-HEMT devices, simulation and modelling

Stephen Sque, NXP Semiconductors
ESSDERC 2013
Bucharest, Romania
16th September 2013
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
- High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
Outline

- **GaN and related materials**
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
- High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
Gallium nitride

- Gallium nitride (GaN) is a binary III-V compound material, with:
 - Wurtzite (hexagonal) crystal structure
 - Wide band gap of 3.4 eV (direct)
 - High thermal conductivity

![Diagram of Gallium Nitride Crystal Structure]
Properties of GaN

- Selected properties at 300 K:

<table>
<thead>
<tr>
<th>Property</th>
<th>Si</th>
<th>4H-SiC</th>
<th>Diamond</th>
<th>GaAs</th>
<th>GaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band gap (eV)</td>
<td>1.1</td>
<td>3.2</td>
<td>5.5</td>
<td>1.4</td>
<td>3.4</td>
</tr>
<tr>
<td>Relative permittivity</td>
<td>11.9</td>
<td>10</td>
<td>5.5</td>
<td>12.5</td>
<td>9–10</td>
</tr>
<tr>
<td>Breakdown field (MV/cm)</td>
<td>0.3</td>
<td>3</td>
<td>5</td>
<td>0.4</td>
<td>3</td>
</tr>
<tr>
<td>Thermal conductivity (W/K/cm)</td>
<td>1.48</td>
<td>3.30</td>
<td>20.00+</td>
<td>0.54</td>
<td>1.30</td>
</tr>
</tbody>
</table>
Aluminium nitride

- Aluminium nitride (AlN) is a binary III-V compound material, with:
 - Wurtzite (hexagonal) crystal structure
 - Wide band gap of 6.2 eV (direct)
 - High thermal conductivity
AlGaN

- Take GaN and replace a fraction \(x \) (the *mole fraction*) of the Ga atoms with Al atoms \(\Rightarrow \text{Al}_x\text{Ga}_{1-x}\text{N} \)

- Most material properties are then intermediate between those of GaN and AlN

<table>
<thead>
<tr>
<th>Quantity</th>
<th>GaN</th>
<th>Al({0.2})Ga({0.8})N</th>
<th>AlN</th>
<th>Units</th>
<th>Interpolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Band gap</td>
<td>3.43</td>
<td>3.77</td>
<td>6.20</td>
<td>eV</td>
<td>Bowed, factor (-1.33)</td>
</tr>
<tr>
<td>Breakdown field</td>
<td>3.3</td>
<td>4.32</td>
<td>8.4</td>
<td>MV/cm</td>
<td>Linear (?)</td>
</tr>
<tr>
<td>Relative permittivity</td>
<td>9.5</td>
<td>9.3</td>
<td>8.5</td>
<td></td>
<td>Linear</td>
</tr>
</tbody>
</table>

GaN crystal growth

- Convention: [0001] direction is along \(c \) axis from Ga to N

- A-face: atom of type A is on top of bilayer

- Single-bond (low energy) surface

[O. Ambacher et al., J. Appl. Phys. 85 (6), 3222 (1999)]
Ga–N bonds are *polar*

The Wurtzite crystal structure is *non-centrosymmetric* (*i.e.*, it lacks inversion symmetry)

Result: **spontaneous polarisation** of the material

Note: P_{SP} of AlN is stronger than that of GaN

[O. Ambacher *et al.*, J. Appl. Phys. 85 (6), 3222 (1999)]

Piezoelectric effect

- Applying stress to the material distorts the crystal structure, causing further polarisation: **piezoelectric polarisation** P_{PE}

 - If the horizontal lattice parameter a is varied from its natural value a_0 there will be non-zero piezoelectric polarisation along the vertical (c) axis:

 $$P_{PE} = 2 \frac{a - a_0}{a_0} \left(e_{31} - e_{33} \frac{C_{13}}{C_{33}} \right)$$

 Constant for a given x (Al fraction)

[O. Ambacher et al., J. Appl. Phys. 85 (6), 3222 (1999)]
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
 - High-voltage breakdown
 - GaN-HEMT device simulation
 - Compact modelling of GaN HEMTs
- Summary and conclusion
The AlGaN/GaN heterostructure

- AlN has a smaller lattice constant a_0 than GaN
- …and more spontaneous polarisation P_{SP}
- Grow $\text{Al}_x\text{Ga}_{1-x}\text{N}$ on top of (relaxed) GaN:

$$\text{Al}_x\text{Ga}_{1-x}\text{N} \downarrow P_{SP} \rightarrow \text{Ga}_x\text{N} \downarrow P_{SP}$$

Net positive polarisation-induced sheet charge
The AlGaN/GaN heterostructure

- Electronic band gap of AlN is larger than that of GaN
 - The band gap of $\text{Al}_x\text{Ga}_{1-x}\text{N}$ is somewhere in-between

- Electrons confined to a thin region near the $\text{Al}_x\text{Ga}_{1-x}\text{N}/\text{GaN}$ interface

- This is the **two-dimensional electron gas** (2DEG)
 - Areal density $\sim 10^{13}$ electrons/cm$^{-2}$

- No doping \Rightarrow no impurity scattering \Rightarrow very high mobility
Formation of the 2DEG

- Where do the electrons for the 2DEG “come from”?
- Model: donor-like surface states “provide” electrons

Electrons can come from Ohmic contacts. Surface donors play a role in the electrostatics.

Theory

Measurements

[J. P. Ibbetson et al., Appl. Phys. Lett. 77 (2), 250 (2000)]
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- **GaN wafers**
- GaN devices
- Issues facing high-voltage GaN-HEMT development
- High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
GaN wafers

- Choice of substrate is very important

- **Sapphire** (Al$_2$O$_3$)
 - 😊 Semi-insulating, can withstand high growth temperatures, relatively cheap
 - 😞 Very low thermal conductivity, large lattice mismatch, large CTE mismatch

- **Silicon carbide** (SiC)
 - 😊 High thermal conductivity, low lattice mismatch, relatively low CTE mismatch
 - 😞 High cost, crystallographic defects

- **Silicon** (Si)
 - 😊 Low cost, excellent availability of large diameters, acceptable thermal conductivity, processing in standard silicon fabs (high productivity)
 - 😞 Large lattice mismatch, very large CTE mismatch
GaN-on-Si wafers

- Base: silicon substrate with (111) face
- Example recipe:
 1. Thin seed layer of AlN
 2. Thick buffer layer: superlattice of alternating GaN and AlGaN layers
 3. High-quality GaN layer
 4. AlGaN barrier
 5. GaN cap layer

- Reduce dislocation density
- Stress control / wafer bow

[S. Lenci et al., Elec. Dev. Lett. 34 (8), 1035 (2013)]
Dislocations

- High initial dislocation density reduced towards surface (2DEG) by optimisation of buffer design

Dislocations $\sim 10^9 \text{ cm}^{-2}$

Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- **GaN devices**
 - Issues facing high-voltage GaN-HEMT development
 - High-voltage breakdown
 - GaN-HEMT device simulation
 - Compact modelling of GaN HEMTs
- Summary and conclusion
GaN devices
High–electron-mobility transistor (HEMT)

- Ohmic contacts to 2DEG (Ti/Al)
- Source and drain metallisation (Al)
- Gate metal (Ni) on top of GaN cap
 - Schottky contact
- SiN passivation
- Metal field plate(s)

NXP process: [J. J. T. M. Donkers et al., CS-MANTECH 2013, 259]
GaN devices – HEMT operation

Zero bias

Off-state

On-state

Off-state, high voltage
GaN devices
Schottky barrier diode (SBD)

- “HEMT without a source”

- “Gate” → **anode**
 - Longer to handle high current

- “Drain” → **cathode**
GaN devices – diode operation

- Forward operation (anode+, cathode−)
 - Electrons flow from 2DEG across AlGaN into anode

- Reverse operation
 - Electron leakage from anode edges
GaN devices – cap layer

- A few extra nanometres of GaN grown on top of AlGaN

- Possible advantages:
 - Decreased reverse leakage through Schottky contact
 - Reduced peak electric field
 - AlGaN protected against processing
 - Nitrogen degassing prevented
 - Increased device gain
 - Increased power added efficiency
 - Improved DC reliability

[E. T. Yu et al., Appl. Phys. Lett. 73 (13), 1880 (1998)]
[P. Waltereit et al., J. Appl. Phys. 106, 023535 (2009)]
[S. Arulkumaran et al., Jpn. J. Appl. Phys. 44, 2953 (2005)]
GaN devices – HEMT characteristics

- V_T: threshold voltage, typically -2 to -4 V
- V_F: diode forward turn-on voltage, typically $+1$ to $+2 \text{ V}$

- I_{on}: on-current, typically taken at $V_{GS} = 0 \text{ V}$ for $V_{DS} = 0.1 \text{ V}$
- \Rightarrow On-resistance $R_{on} = \frac{V_{DS}}{I_{on}}$
GaN devices – performance

- Wide band gap \(\Rightarrow \) high critical field \(\Rightarrow \) **high voltage**
- High carrier concentration and velocity \(\Rightarrow \) **high current**

High power

High frequency

<table>
<thead>
<tr>
<th></th>
<th>Si</th>
<th>GaAs</th>
<th>4H-SiC</th>
<th>GaN</th>
<th>Diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_g (eV))</td>
<td>1.1</td>
<td>1.42</td>
<td>3.26</td>
<td>3.39</td>
<td>5.45</td>
</tr>
<tr>
<td>(n_i (cm^{-3}))</td>
<td>(1.5 \times 10^{10})</td>
<td>(1.5 \times 10^6)</td>
<td>(8.2 \times 10^{-9})</td>
<td>(1.9 \times 10^{-10})</td>
<td>(1.6 \times 10^{-27})</td>
</tr>
<tr>
<td>(\varepsilon_r)</td>
<td>11.8</td>
<td>13.1</td>
<td>10</td>
<td>9.0</td>
<td>5.5</td>
</tr>
<tr>
<td>(\mu_n)</td>
<td>(1350)</td>
<td>(8500)</td>
<td>(700)</td>
<td>(1200) (Bulk)</td>
<td>(1900)</td>
</tr>
<tr>
<td>(\nu_{sat} (10^7 cm/s))</td>
<td>1.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.5</td>
<td>2.7</td>
</tr>
<tr>
<td>(E_{br} (MV/cm))</td>
<td>0.3</td>
<td>0.4</td>
<td>3.0</td>
<td>3.3</td>
<td>5.6</td>
</tr>
<tr>
<td>(\Theta)</td>
<td>(1.5)</td>
<td>0.43</td>
<td>3.3-4.5</td>
<td>1.3</td>
<td>20</td>
</tr>
<tr>
<td>(JM = \frac{E_{br} \nu_{sat}}{2\pi})</td>
<td>1</td>
<td>2.7</td>
<td>20</td>
<td>27.5</td>
<td>50</td>
</tr>
</tbody>
</table>

[Stephen Sque, ESSDERC tutorial 16th September 2013]

[A. Johnson, RCA Review **26**, 163 (1965)]
GaN devices – performance

- Baliga figure of merit
 - Based on minimising the conduction losses in power FETs
 - Assumes power losses are solely due to the on-state power dissipation
 - Applies to lower frequencies where conduction losses dominate

\[BFOM = \varepsilon_r \mu E_c^3 \]

[B. J. Baliga, Elec. Dev. Lett. 10 (10), 455 (1989)]

<table>
<thead>
<tr>
<th>Material</th>
<th>(E_g) (eV)</th>
<th>(\varepsilon_r)</th>
<th>(\mu_r) (cm(^2)/Vs)</th>
<th>(E_c) (MV/cm)</th>
<th>(v_{sat}) (10(^7) cm/s)</th>
<th>(n_i) (cm(^{-3}))</th>
<th>BFOM*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>1.12</td>
<td>11.8</td>
<td>1350</td>
<td>0.3</td>
<td>1.0</td>
<td>1.5x10(^10)</td>
<td>1</td>
</tr>
<tr>
<td>GaAs</td>
<td>1.42</td>
<td>13.1</td>
<td>8500</td>
<td>0.4</td>
<td>2.0</td>
<td>1.8x10(^6)</td>
<td>17</td>
</tr>
<tr>
<td>4H-SiC</td>
<td>3.26</td>
<td>10</td>
<td>720</td>
<td>2.0</td>
<td>2.0</td>
<td>8.2x10(^-9)</td>
<td>134</td>
</tr>
<tr>
<td>6H-SiC</td>
<td>2.86</td>
<td>9.7</td>
<td>370</td>
<td>2.4</td>
<td>2.0</td>
<td>2.4x10(^{-5})</td>
<td>115</td>
</tr>
<tr>
<td>2H-GaN</td>
<td>3.44</td>
<td>9.5</td>
<td>900</td>
<td>3.0</td>
<td>2.5</td>
<td>1.0x10(^{-10})</td>
<td>537</td>
</tr>
</tbody>
</table>

\(E_g \): bandgap; \(\varepsilon_r \): dielectric constant; \(\mu_r \): electron mobility; \(E_c \): critical electric field; \(v_{sat} \): saturation velocity; \(n_i \): intrinsic carrier density.

*BM = \varepsilon \mu E_c^3 \), BFOM was normalized by the BM of Si.

[N. Ikeda et al., Proc. IEEE 98 (7), 1151 (2010)]
GaN devices – benchmarking

- Minimise **specific on-resistance** ($R_{on} \times A$)
- Maximise **breakdown voltage**

![Graph showing specific on-resistance vs breakdown voltage](image)

[M. Su et al., Semicond. Sci. Technol. 28, 074012 (2013)]
GaN devices – benchmarking

- Some more **specific-on-resistance vs. breakdown-voltage** plots

[N. Ikeda et al., Proc. ISPSD 2011, 284]

See also [Q. Jiang et al., EDL 34 (3), 357 (2013)] and [Z. Tang et al., EDL 34 (3), 366 (2013)]
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
- High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
Issues

Schottky gate
- Reverse leakage
- Normally-on device
- Forward turn-on

High electric field
- Edge leakage
- Charge injection
- Limits breakdown

Final passivation
- Parasitic breakdown

First passivation
- On-resistance
- Dynamic behaviour

High electric field
- Charge injection
- Limits breakdown

AlGaN barrier
- Gate leakage
- Diode turn-on
- Charge trapping, threshold shift
- Inverse piezoelectric effect

GaN and buffer layers
- Punch-through breakdown
- Vertical leakage/breakdown
- Dynamic behaviour

Punch-through breakdown
- Vertical leakage/breakdown
- Dynamic behaviour
Issues – gate leakage

- Various mechanisms potentially involved in gate leakage

See also [L. Xia et al., Appl. Phys. Lett. 102 (11), 113510 (2013)]
Issues – current collapse

- On-state current temporarily reduced following off-state stress

- Also known as **dynamic** R_{on}
 - On-state resistance depends on recent history of device biasing
Issues – current collapse

- Device design and substrate composition can have a strong influence on the magnitude of current collapse (dynamic-R_{on} increase)

![Graph showing the relationship between Vds (V) and Id (mA) for different off-state stresses and gate configurations.]

- Off-state stress:
 - 0 V
 - 30 V
 - 50 V
 - 65 V

- Also [S. DasGupta et al., Appl. Phys. Lett. 101 (24), 243506 (2012)]

[O. Hilt et al., Proc. ISPSD 2012, 345 (2012)]

Stephen Sque - ESSDERC tutorial 16th September 2013
Issues – virtual-gate effect

- **Off-state stress:**
 - Electrons from gate injected into trap states next to gate

- **On-state after stress:**
 - Trapped electrons act like a negatively biased gate
 - 2DEG partially depleted underneath ⇒ increased R_{on}

- **Later (~seconds):**
 - Electrons de-trap, 2DEG current restored

[Inferred from the image]

- [R. Vetury et al., Trans. Elec. Dev. 48 (3), 560 (2001)]
- [T. Mizutani et al., TED 50, 2015 (2003)]
Issues – buffer trapping

- **Off-state stress:**
 - Electrons trapped in bulk (deep donors/acceptors?)

- **On-state after stress:**
 - Trapped electrons partially deplete the 2DEG above ⇒ increased R_{on}

- **Later (~minutes):**
 - Electrons de-trap, 2DEG current restored

Issues – inverse piezoelectric effect

- **Piezoelectric effect:**
 mechanical stress \Rightarrow polarisation \((i.e., \text{internal electric field}) \)

- **Inverse (or converse) piezoelectric effect:**
 applied voltage \Rightarrow electric field
 \Rightarrow mechanical stress

 [J. Joh *et al.*, Microelec. Reliab. 50 (6), 767 (2010)]

- High field at drain-side edge of gate
 \Rightarrow local stress \Rightarrow defect formation
 \Rightarrow device degradation (reliability)
 - Mitigate with field-plate design \Rightarrow
 - Not the full story…

 See [Meneghesso / Meneghini / Zanoni]

 [Y. Ando *et al.*, TED 59 (12), 3350 (2012)]

Also [N. A. Mahadik *et al.*, Appl. Phys. Lett. 93 (26), 262106 (2008)]
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
 - High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
Breakdown – measurement

- Typical breakdown measurement:
 - Start with all terminal biases zero
 - Reduce V_G to a few volts below threshold
 - Increase V_D and record terminal currents

- Current criterion often used for defining breakdown voltage V_{br} (e.g., V_{DS} for $I_D = 1$ mA/mm)

- Other definitions for V_{br} used!

 V_{br}

- Drain injection technique: $V_S = 0$, set I_D, sweep V_{GS} and find max. V_{DS}

Breakdown – mechanisms

- **Extrinsic**: air arcing, conductive surface layer
- **Intrinsic**: impact ionisation, punch-through, vertical breakdown
Breakdown – mechanisms

- Compare terminal currents to assess the relative contributions of different physical mechanisms to breakdown

- Example using current criterion for breakdown:

 - Dominated by gate-leakage impact-ionisation
 - Dominated by drain-to-source punch-through
 - Dominated by vertical current

16th September 2013
Stephen Sque - ESSDERC tutorial 16th September 2013
Breakdown – punch-through

- At high drain biases in the off-state, electrons can travel through the bulk GaN underneath the (turned-off) gate ⇒ drain-to-source current

- Prevent using: longer gate, acceptor doping in the bulk, back barrier, ...

Stephen Sque - ESSDERC tutorial 16th September 2013
Breakdown – impact ionisation

- **Impact ionisation**: high-energy electrons (or holes) can knock other electrons out of valence-band states into conduction-band states, creating electron-hole pairs and hence raising the current.

- **Avalanche breakdown**: *every* electron (or hole) creates another electron-hole pair, and the current grows uncontrollably.
Breakdown – impact ionisation

- Positive temperature coefficient: V_{br} increases with increasing T \(\Rightarrow \) suggests impact ionisation (increased phonon scattering)

 [N. Dyakonova et al., Electron. Lett. 34 (17), 1699 (1998)]
 [T. Nakao et al., Phys. Stat. Sol. (c) 0 (7), 2335 (2003)]
 [M. Wang and K. J. Chen, TED 57 (7), 1492 (2010)]
 [X. Z. Dang et al., Electron. Lett. 35 (7), 602 (1999)]

- Impact-ionisation parameters for GaN have been evaluated theoretically

 [J. Kolník et al., J. Appl. Phys. 81 (2), 726 (1997)]
 [F. Bertazzi et al., J. Appl. Phys. 106, 063718 (2009)]

- …and determined experimentally

 [K. Kunihiro et al., EDL 20 (12), 608 (1999)]
 [N. Dyakonova et al., Appl. Phys. Lett. 72 (10), 2562 (1998)]

Not the full story? See also [Meneghesso / Meneghini / Zanoni]
Breakdown – gate-to-drain length scaling

- Breakdown voltage V_{br} scales with gate-to-drain length L_{GD} until vertical breakdown becomes dominant.

![Graph showing Drain current (A) vs. Drain voltage (V) with Lgd=2, 4, 6, and 8 μm.]

$\Delta V_{br} / \Delta L_{GD} < 3$ MV/cm? – leakage, electric field peaks, etc.

See also [N. Ikeda et al., Proc. IEEE 98 (7), 1151 (2010)]

Breakdown – vertical current

- Vertical leakage mechanisms / activation energies depend on wafer type
 [A. Pérez-Tomás et al., J. Appl. Phys. 113, 174501 (2013)]

- Traps identified in carbon-doped GaN-on-Si buffer layers

Breakdown – buffer optimisation

- Increasing the thickness of the buffer can increase breakdown voltage due to improved material quality and reduced vertical leakage
 [S. L. Selvaraj et al., Elec. Dev. Lett. 33 (10), 1375 (2012)] (see earlier slide)

- The inclusion of a carbon-doped “back barrier” can postpone punch-through to higher V_{DS} (at the expense of increased on-resistance)
 [E. Bahat-Treidel et al., Trans. Elec. Dev. 57 (11), 3050 (2010)]
 [S. A. Chevtchenko et al., Appl. Phys. Lett. 100, 223502 (2012)]

See also [N. Ikeda et al., Proc. IEEE 98 (7), 1151 (2010)]
Breakdown – passivation optimisation

- SiN surface passivation can increase the breakdown voltage by modifying the surface charges/traps (and hence the electric field)

Electroluminescence

[Y. Ohno et al., Appl. Phys. Lett. 84 (12), 2184 (2004)]
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
- High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
Simulation – structure

S/D electrodes
- Work function
- Contact resistance

Surface passivation
- Fixed charge?

Interface donors
- Energy level(s)
- Concentration
- Dynamics

Ohmic contacts
- n-type doping
- Shape / profile

Schottky gate
- Work function
- Tunnelling models

Surface passivation
- Fixed charge?

AlGaN barrier
- Polarisation charges
- Traps / fixed charge

Bulk GaN
- Doping concentration, energy level, depth profile, and dynamics

Interface(s)
- Polarisation charge?
- Energy band offsets

Substrate
- Doping (conductivity)
- Energy band offsets

Buffer layer(s)
- Superlattice?
- Doping

Material parameters
- Band gaps, electron affinities, permittivities, carrier mobilities, impact-ionisation parameters…

AlGaN

GaN

SiN
Simulation – set-up

- Density gradient vs. classical simulation
- Lattice temperature equation – necessary for high-power simulation
- Drift-diffusion vs. hydrodynamic model
- Tunnelling at contacts and interfaces – Schottky gate
- Different levels of polarisation models – fixed charges vs. built-in polarisation
- Thermionic heterointerface condition
- Mobility models – doping dependence, saturation, surface (2DEG) vs. bulk
- Anisotropy? – mobility / impact ionisation
- Fermi-Dirac vs. Boltzmann statistics, incomplete ionisation of impurities
- Generation – band-to band, impact ionisation
- Recombination – direct (band-to-band), Shockley-Read-Hall
- Numerical precision – low carrier concentrations, steep gradients
Simulation – internal observations

- Electron and hole distribution in off-state at high drain bias
 - Can be correlated to (for example) electroluminescence measurements

[Y. Kong et al., Proc. ICMMT 2012, 1]
Simulation – internal observations

-7 V

Impact ionisation

SiN

2DEG

Impact ionisation

G

Gate leakage

Electron

punch-through

Hole current

Hole current

Electron

punch-through

To substrate

[own work]

S (0 V)

D

+1235 V

GaN

SiN

GaN
Simulation – field plates

- There is a large peak in the surface electric field at the drain side of the gate (foot)
- Using a gate field plate (head) can reduce this field peak, but adds a new one
- Using another field plate can reduce these peaks but adds a third one
- Field-plate design must be optimised
 - Can affect breakdown, capacitances, current collapse, degradation, etc.

\[
E_x \, dx = -V_{DS}
\]

References:
- [N.-Q. Zhang et al., Elec. Dev. Lett. 21 (9), 421 (2000)]
- [J. Li et al., Elec. Lett. 37 (3), 196 (2001)]
- [A. Wakejima et al., Appl. Phys. Lett. 90, 213504 (2007)]
- [W. Saito et al., Trans. Elec. Dev. 54 (8), 1825 (2007)]
- [H. Hanawa et al., IRPS 2013, CD.1.1]
Simulation – field plates

- Simulations can be used to optimise the device geometry to obtain the maximum V_{br} with minimum degradation in frequency response and R_{on}

- Unity current gain (cut-off) frequency: $f_T = \frac{g_m}{2\pi C_G}$

 Minimise increase in gate capacitance

FP height (SiN thickness)
FP length
Surface field at V_{br}

$V_D = 630$ V
Simulation – field plates

- Making the gate-connected field plate too long can reduce V_{br}
 - Depending on definition of V_{br}!

[H. Onodera and K. Horio, Proc. EMICC (EuMIC) 2012, 401]
Simulation – comparison to measurements

- Kelvin probe force microscopy used to map internal potential distribution (w/wo FP)

[A. Wakejima et al., Appl. Phys. Lett. 90, 213504 (2007)]

See also [S. Kamiya et al., Appl. Phys. Lett. 90, 213511 (2007)]
Simulation – drain field peak?

- Electric field peak at drain at very high voltage – enough to cause breakdown?
 - Dependent on specific details of Ohmic-contact implementation?

![Graph showing electric field vs distance with voltage and material properties][1]

[H. Onodera and K. Horio, Proc. EMICC (EuMIC) 2012, 401]

[W. Saito et al., TED 50 (12), 2528 (2003)]
also [W. Saito et al., Proc. IEDM 2003, 687]
Simulation – impact ionisation

- Improved modelling of impact ionisation can have a significant effect on simulated breakdown voltages
 - Treat impact-ionisation parameters as tuning parameters

![Graph showing impact ionization coefficient vs. inverse electric field](image1)

![Graph showing drain current vs. drain voltage](image2)

[K. Kodama et al., J. Appl. Phys. 114, 044509 (2013)]
Simulation – buffer optimisation

- Thinning the lowly doped “spacing layer” between surface and carbon-doped layer can increase breakdown voltage via a decrease in the surface electric field peak.

\[V_D = 300 \text{ V} \]

See also [M. J. Uren et al., Trans. Elec. Dev. \textbf{59} (12), 3327 (2012)]
Simulation – multiphysics

- Thermo-electro-elastic simulations:
 - fully coupled thermal, mechanical, and electrical equations

- Used to investigate (for example):
 - The role of thermal and piezoelectric stresses on defect formation
 - …and the impact on electrical characteristics

[TEM [U. Chowdhury et al., EDL 29 (10), 1098 (2008)]

[M. G. Ancona et al., J. Appl. Phys. 111, 074504 (2012)]
[M. G. Ancona, Proc. IEDM 2012, 315]
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
- High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
Modelling – compact models

- Models for GaN devices are needed to enable application development via circuit simulation and optimisation

- Different types of compact model:
 - **Table-based**: measured device data stored in large look-up tables
 - Very fast, but extrapolation outside of measured range is treacherous, and accurate scaling to other device dimensions is not possible
 - **Empirical**: uses whichever mathematical functions have the right shape
 - Good fits possible, but parameters are not physically meaningful, scaling is not physical, and extrapolation is still dubious
 - **Physics-based**: equations derived from modelling physical phenomena
 - Parameters physically meaningful, scaling is physical, extrapolation reliable
 - **Threshold-voltage–based**: physical expressions smoothed together
 - **Surface-potential–based**: uses a single expression for all regimes, inherent symmetry, established as the preferred approach in MOS modelling
 [Gildenblat et al., J. Solid-State Circ. 39 (9), 1394 (2004)]

See also [L. Dunleavy et al., Microwave Magazine 11 (6), 82 (2010)]
Modelling – empirical model

- **Chalmers (a.k.a. Angelov) model**
 - An empirical model for HEMT and MESFET devices, introduced in 1992
 - Extended in 1996 to include temperature, dispersion, and soft breakdown
 [I. Angelov *et al.*, TMTT **44** (10), 1664 (1996)]
 - **Widely used for (RF) GaN-HEMTs**
 - Modified in 2010 to make parameters more physical
Modelling – empirical model

- Modified form of the Angelov model for GaN-on-Si power switches

\[I_{ds} = I_{p_{kt}} \left[1 + \tanh \left(\psi(V_{gs}) \right) \right] \cdot \tanh(\alpha_T V_{ds} + k_T V_{ds}^3) [1 + \lambda V_{ds}] \]

\[\psi = \sinh \left[P_1t(V_{gs} - V_{p_{kt}}) + P_2t(V_{gs} - V_{p_{kt}})^2 + P_3t(V_{gs} - V_{p_{kt}})^3 \right] \]

\[\alpha_T = \alpha_R + \alpha_S [1 + \tanh(\psi)] \]

\[I_{p_{kt}} = I_{p_{k0}} + (I_{p_k} - I_{p_{k0}}) \tanh(\alpha_R V_{ds}) \]

\[V_{p_{kt}} = V_{p_{k0}} + (V_{p_k} - V_{p_{k0}}) \tanh(\alpha_R V_{ds}) \]

\[P_{it} = P_{i0} + (P_i - P_{i0}) \tanh(\alpha_R V_{ds}) \]

Introduce temperature dependence for the model parameters

[S. Stoffels et al., Proc. THERMINIC 2011, 1 (2011)]

See also [S. Stoffels THERMINIC 2012]
Modelling – empirical model

- Analytical model including current collapse

Stephen Sque - ESSDERC tutorial 16th September 2013
Modelling – physics-based model

- Model for 2DEG charge density:
 \[n_s = \frac{C_g V_g}{q} \frac{V_g + V_{th} [1 - \ln(\beta V_{gon})]}{V_g \left(1 + \frac{V_{th}}{V_{g0}}\right) + \frac{2\gamma_0}{3} \left(C_g V_{go}^2 \frac{V_{g0}}{q}\right)^{2/3}} \]
 [S. Khandelwal et al., Trans. Elec. Dev. 58 (10), 3622 (2011)]

- Expression extended for validity in sub-threshold regime…
 \[n_{s,\text{unified}} = \frac{2V_{th}(C_g/q) \ln\{1 + \exp(V_{go}/2V_{th})\}}{1/H(V_{go,p}) + (C_g/qD) \exp(-V_{go}/2V_{th})} \]

 …and used as basis for drain-current model…

\[
\begin{align*}
L_d,\text{above} &= \frac{\mu_0 C_g W_g}{L_g G_{mob} G_{field}} \left\{ \sum_{i=1}^{6} c_i (\psi_{gd}^i - \psi_{gs}^i) + c_0 \ln \left(\frac{\psi_{gd}}{\psi_{gs}} \right) \right\} \\
L_d,\text{sub} &= \frac{2\mu_0 W_g qD V_{th}^2}{L_g G_{mob} G_{field} \exp(V_{go}/V_{th})} \exp \left(V_{go}/V_{th} \right) \left(1 - \exp \left(-V_d S / V_{th} \right) \right)
\end{align*}
\]

…to which carrier velocity saturation, channel-length modulation, short-channel effects, and self-heating are added

[S. Khandelwal and T. A. Fjeldly, Solid-State Electronics 76, 60 (2012)]
See also [Yigletu et al., Proc. WiSNet / SiRF / RWS / PAWR 2013]

See also [U. Radhakrishna et al., Proc. IEDM 2012, 319/13.6.1 (2012)]
and [X. Cheng et al., TED 56, 2881 (2009)]
Modelling – physics-based model

- “Zone-based” compact model based on observations from device simulations
 - Different equations derived for different regions of the device, then smoothly joined
 - Alternative to equivalent-circuit models

Simulations

Output

and [D. Hou et al., TED 60 (2), 639 (2013)]
Modelling – surface-potential–based model

- The “first surface-potential–based compact model for RF GaN HEMTs”

\[
(V_{GS}^* - \psi_s)^2 = k_0^2 \left\{ \phi_T \left[\exp \left(\frac{\psi_s - V}{\phi_T} \right) - 1 \right] - \psi_s + V \right\}
\]

\[
I_D = \frac{W}{G_L} \left\{ \frac{qN_D t_{GaN} V_{DS} - \bar{Q}_{tot} \Delta \psi}{e_0} + C_{ins} k_0 \frac{3}{2} \left[F(\psi_s) - F(\psi_{SL} - V_{DS}) \right] \right\}
\]

Model

Sub-circuit implementation

TCAD / physics

Output

[Stephen Sque - ESSDERC tutorial 16th September 2013]
Modelling – surface-potential–based model

- A Surface-Potential-Based Compact Model for AlGaN/GaN MODFETs

\[
\varphi_s = E_F + V_c
\]

\[
n_s = c_{ox}(V_{go} - V_{off} - \varphi_s)
\]

\[
I_{ds} = \beta \mu_{LF} \frac{(V_{gs} - V_{off} + V_q - \varphi_{sm})\varphi}{r_L + \delta_0 \varphi \mu_a / V_{CL}}
\]

- Analytical Modeling of Surface-Potential and Intrinsic Charges in AlGaN/GaN HEMT Devices

\[
n_s = D V_{th} \left[\ln \left(1 + e^{\frac{E_f - E_0}{V_{th}}} \right) + \ln \left(1 + e^{\frac{E_f - E_1}{V_{th}}} \right) \right]
\]

\[
E_{0,1} = \gamma_{0,1} n_s^{2/3}
\]

\[
n_s = \frac{e}{q_d}(V_{go} - E_f - V_x)
\]

\[
I_{ds} = \frac{\mu_{eff} C_g}{\sqrt{1 + \theta_{sat}^2 \psi_{ds}^2}} \frac{W}{L} (V_{go} - \psi_m + V_{th}) (\psi_{ds}) (1 + \lambda V_{ds})
\]

See also [R. Jana and D. Jena, Proc. DRC 2012, 147 (2012)]
and [Martin / Hahe / Lucci (2012–2013)]
Outline

- GaN and related materials
- The AlGaN/GaN heterostructure
- GaN wafers
- GaN devices
- Issues facing high-voltage GaN-HEMT development
- High-voltage breakdown
- GaN-HEMT device simulation
- Compact modelling of GaN HEMTs
- Summary and conclusion
Summary and conclusion

- The **material properties** of GaN and AlGaN, together with the remarkable properties of the AlGaN/GaN **heterostructure**, enable the creation of **high-power, high-frequency** devices.

- **Issues** affecting AlGaN/GaN-based device development include: leakage currents, current collapse (dynamic behaviour), reliability, and sub-optimal breakdown.

- **Device simulation** can be used to explore and address these issues, for example through buffer-composition and field-plate optimisation.

- **Compact models** for GaN HEMTs are maturing into surface-potential–(physics-) based models with high accuracy, efficiency, and scalability (the Compact Model Council is currently choosing a standard GaN-HEMT compact model).
Acknowledgements

NXP Semiconductors: Dick Büthker, Jeroen Croon, Romain Delhougne, Johan Donkers, Valerie Girault, Dirk Gravesteijn, Stephan Heil, Fred Hurkx, Ponky Ivo, Dick Klaassen, Robert Lander, Twan van Lippen, Ralf van Otten, Saurabh Pandey, Matthias Rose, Jan Šonský, Poh Cheng Tan, and Marnix Willemsen

University of Cambridge: Giorgia Longobardi and Florin Udrea